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Workshop Goal

* Bring together cosmic ray and nuclear
physicists to discuss current
understanding of high energy nuclear
interactions
— Two radically different approaches to same

goal: better understanding of the universe
by studying nuclear interactions

— Two of the largest, most sensitive
apparatus ever: Auger and LHC
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Cosmic Rays
Spectrum falls as E-27

Main features: knee
and ankle

Origin uncertain:

Supernova Remnants
up to ~10'6 eV

Beyond that, likely
extragalactic

Active Galactic
Nuclei, Gamma Ray
Bursts

CRs bent by magnetic
fields, and interact

? along the way



The Most Energetic in the
World...
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Measured Quantities

Detect CRs through secondaries in
their enormous cascades
Density and timing of particles
relative to shower core:
Electrons, muons, interaction
height

Photons in atmosphere from Cherenkov
effect and air fluorescence (excited
nitrogen)




Detection Methods

* Ground Arrays (AGASA, KASCADE)

— Measure density of particles: N, N,
— Strongly model dependent
— Takes data 100% of the time

* Fluorescence Arrays (HiRes)
— Tracks light of shower to measure energy

— Model independent (still dependent on simulation to
determine aperture)

— Takes data ~10% of the time

* Needs cloud-free, moonless nights and bright events
* Hybrid Arrays (Auger, TA)
— Both ground and fluorescence
— Can self-calibrate energy scale



CR Detectors: Past and Pre

Auger

* Collection area
~3000 km?

* Fluorescence
and ground array

« Taking data since
2004

* Energy threshold
~10'8 eV
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* Fluorescence array
* Energy threshold

~10"" eV Many Others:
« Took data from AGASA, Kascade,
1997 to 2006 Akeno,...

« Highest energy CR
so far 3.2 x 10?0 eV



Auger: hybrid detector

First hybrid,
4-fold
coincident
event seen
last May
(4 FD and 15
SD)

20 May 2007 E ~10'° eV 28
J. Neto



Highest Energy CRS Pomt to AGNs?

Centaurus-A
Closest AGN

. (2 events)

......................

« 20 of 27 Auger events with E > 6 x 10'° eV
are within 3.1 degrees of an AGN less than

75 Megaparsecs away (244 million light
years): a 3o significance



Implications of CR Correlation

* CRs are charged, so will be bent by
magnetic fields

6z2.7oxzx60EeV f(dx B )

X
E kpc 3uG

arXiv:0712.2843

* Auger correlation within 3.1°, implies
the majority of the highest energy
cosmic rays are protons



Or not?

* HiIRes has a comparable dataset to
Auger, but they do not see a correlation
with AGNs (or anything else)

— 13 events w/energy > 5.6 x 101? eV, 2
correlations, W|th ?___‘(___3_”eﬁxpected by chance
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Current Status

* Disagreement between experiments:
correlation - Auger and HiRes

 Examine additional experimental
variables



Another Measurement:
Composition

* The energy per nucleon changes with
composition

— 1017 eV proton: 1 nucleon
— 1077 eV iron: 56 nucleons, each with ~2 x 101 eV

« Effects development of shower in the
atmosphere

— Shower from particle of mass A and energy E is
superposition of A showers with energy E/A

— Changes ratio and energy of secondary particles
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Composition Measurements

heavy

Slant depth

proton nucleus
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Shower startup

Shower cascade ‘ " |

X.ax ratio of electrons to muons,
energy and number of muons and

y o » electrons are all composition

R. Ulrich dependent



ICRC Results (2007)

K.H. Kampert, arXiv:0801.1986

Auger and HiRes see X
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N, Discrepancy

Lower energy cosmic ray
flux is isotropic, expect equal

2x10° number of muons in equal
exposure bins Simulations
fffffffffffffffffffffffffff WU underestimate the
2 ogtf—* # number of muons at
g 80| | N, = 1.63 high energies by a
x10° [~ T N — — factor of ~1.5. Similar
:Z “““““ Nl_z “““ pr P dearth of muons seen
" at lower energies.




Current Status

Disagreement between experiments:
correlation - Auger and HiRes

Disagreement within experiments:
Auger - correlation and X,

Disagreement between experiment and
simulation for shower parameters
— N, lateral distribution of electrons

A better understanding of interaction
models will help resolve these issues



Interaction Models

« Relationship between observables and
composition/energy is dependent on the
models used to characterize the cosmic ray
showers
— Based on theoretical calculations bounded by

accelerator results

* CRs test interaction models in the forward
physics region

» Extrapolate accelerator results to better
understand highest energy CR data



Key Variables of Interaction
Model

* p - Air cross section: Rate, X, _,

 Distributions of secondary particles
— Neutral pions: N,
— Charged pions: N,
— Baryon-Antibaryon pairs: N,
» Extrapolate these (and others) to CR
energies from accelerator measurements



Estimates of gluon density

H1+ZEUS

Extrapolation of gluon density

[] tosal uncert.

H1 PDF 2000

\\ -0 ™ to various energies

[ total uncert.
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Forward Physics at LHC

 LHC will reach CM energies of 14 TeV

« Several additions planned to increase
data at high rapidity and low X
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An Alternative: High p+
Muons -

~25 km <<

Cosmic Ray

* Muons with a large
transverse momentum -
produced early in the
shower
— Spectrum is sensitive to

composition

* Detect shower energy
and high p; muon in
lceCube

High py w
S. Klein



Proof of Principle —an
1IC22 event

11 lceTop surface stations hit

96 Inlce DOMs hit

— 84 on 4 strings near the
extrapolated shower direction

— 12 on another string, about 400
m away.

Event from May 23, 2007, found Bl
in a search of 4 days data 2o

An independent method to BELUN
measure composition IR

2500 ' IR

lceCube Collaboration, 2007 ICRC 500 p50 T 200 400
S. Klein
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Conclusion

 Many unresolved questions about
highest energy cosmic rays

— Composition, origin, shower constituents
» Accelerator measurements essential for

accurate modeling of shower

parameters and understanding of the
universe

» Cosmic ray measurements can help
constrain accelerator results






0 accelerator

o target

magnetic
fields

p, ¢

1

1

|

1

1

]

|

]

1

1
—;:;;*‘I' o
2

| proton

("

E directional
1 beam

i

Cosmic Accelerators

black hole,
neutron stars

Effectively a v%
fixed target Shock e
geometry. 151 V
Particles 0
produced in

the far forward Y;((
region (high NN
rapidity). Y;\e* 2

G ———
‘_.—————""



High Rapidity, Low x

Phase space coverage

- s §1O4? \
RH IC rapldlty ~ 4 % p-p @14 TeV //\ prex =\Is/2 exp(-n)
S ATLAS,CMS
X ~ 1 0'4 5 (L
. Q-l_.loz
LHC: rapidity ~6-10° = B .
1o s 3
X ~ 10'6 - o % . né ﬁ
S e ©§ ¢
CRs: rapidity ~ 8 " ; = 3%
X~ 10-8 10 é |




Detection of Highest Energy CRs

» Odds of catching one high energy cosmic ray
In a balloon-born apparatus are about 1 in 10
million
— Roughly as likely as winning the state lottery (and

about as expensive)

* Look for secondaries from extensive showers
of cosmic rays in the atmosphere with
massive ground arrays
— Much greater exposure time and collection volume

— But must infer composition, direction from the
secondaries

— Highly dependent on simulation



Model Independent
Parameters (CIC)

» Should get equal number of events in
equal exposure bins

— Corrected for detector acceptance
» Calculate the number of events in each

bin above a given energy and number
of muons

* Divide by “true” (simulated) number of
muons



Sources of Highest Energy Cosmic Rays

Requirements:
Large size

(confinement)
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I Constant intensity method
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Impact of the uncertainty of hadronic interaction features on air showers

EAS observable || cross section multiplicity inelasticity
Uiz strong strong strong
RMS[Xmax] strong weak none(?)
(log1o(Ne)) strong strong strong
RMS[log;o(Ne)] strong strong weak
(log10(NL)) weak some strong
RMS[log;o(Ny)] weak weak none(?)

R. Ulrich



Three Main Interaction Models

« SIBYLL

— pQCD: Uses dual parton model with minijets,
designed for extensive air showers

« QGSJET

— Quark, Gluon and String Model with JETS,
describes hadronic interaction by exchaning
pomerons, includes jets for higher energy
iInteractions

 EPOS

— Includes elastic and inelastic parton ladder
splitting, based on pp and dAu at RHIC
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Artificially modifying
particle multiplicity

& 3 has a large effect on
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Widely shared expectation:

Interaction of the fast partons with nuclear media is determined by gluon
thickness of media along the parton path for smallest x which the parton
can resolve.

Compare central deuteron -gold collision at RHIC and p-air at b < 2 fm at GZK

gluon density GZK p- air _ ( 14 >1/3 ( min (A A) )w
gluon density RHIC d Au 200 Tmin (P — air)
| 0°

=4 (using a conservative value of (W=0.2)

Stronger suppression of forward production at GZK

-
than observed at RHIC

M. Strickman
gluon density GZK p-air ~ gluon density LHC p Pb




LHCf: detectors on both sides of IP1

Sample CR
rapidity region:
) 8 ) n - 8 7
Detector I INTERACTION POINT Detector II
Tungsten IP1 (ATLAS) Tungsten
Scintillator Scintillator
% = :
\Scintillating fibers, : Xl (_ Silicon ustrips )

| / | 0 < 400 prad

[ Beam line ]

Detectors should measure energy and position of vy
from n° decays - e.m. calorimeters with
position sensitive layers

Prague - September 9, 2005 The LHCf experiment at LHC Oscar Adriani




S Experimental layout

Leading Protons detectors at TOTal Elastic and
147,220m from the IP diffractive cross

section Measurement
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Leading Protons detectors at
147,220m from the IP

Telescopes = =&  _ -
Largest acceptance in a hadron_ ~@" X
. . . . TZ ’ T
collider. 107 minimum bias events/day. RP
~irst Roman pot already installed, ready

0 take data at LHC start J. Whitmore 5
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